13 research outputs found

    \u3ci\u3eAMBYSTOMA\u3c/i\u3e: PERSPECTIVES ON ADAPTATION AND THE EVOLUTION OF VERTEBRATE GENOMES

    Get PDF
    Tiger salamanders, and especially the Mexican axolotl (Ambystoma mexicanum), are important model organisms in biological research. This dissertation describes new genomic resources and scientific results that greatly extend the utility of tiger salamanders. With respect to new resources, this dissertation describes the development of expressed sequence tags and assembled contigs, a comparative genome map, a web-portal that makes genomic information freely available to the scientific community, and a computer program that compares structure features of organism genomes. With respect to new scientific results, this dissertation describes a quantitative trait locus that is associated with ecologically and evolutionarily relevant variation in developmental timing, the evolutionary history of the tiger salamander genome in relation to other vertebrate genomes, the likely origin of amniote sex chromosomes, and the identification of the Mexican axolotl sex-determining locus. This dissertation is concluded with a brief outline of future research directions that can extend from the works that are presented here

    The Sea Lamprey Meiotic Map Improves Resolution of Ancient Vertebrate Genome Duplications

    Get PDF
    It is generally accepted that many genes present in vertebrate genomes owe their origin to two whole-genome duplications that occurred deep in the ancestry of the vertebrate lineage. However, details regarding the timing and outcome of these duplications are not well resolved. We present high-density meiotic and comparative genomic maps for the sea lamprey (Petromyzon marinus), a representative of an ancient lineage that diverged from all other vertebrates ~550 million years ago. Linkage analyses yielded a total of 95 linkage groups, similar to the estimated number of germline chromosomes (1n ~ 99), spanning a total of 5570.25 cM. Comparative mapping data yield strong support for the hypothesis that a single whole-genome duplication occurred in the basal vertebrate lineage, but do not strongly support a hypothetical second event. Rather, these comparative maps reveal several evolutionarily independent segmental duplications occurring over the last 600+ million years of chordate evolution. This refined history of vertebrate genome duplication should permit more precise investigations of vertebrate evolution

    Sal-Site: Integrating new and existing ambystomatid salamander research and informational resources

    Get PDF
    Salamanders of the genus Ambystoma are a unique model organism system because they enable natural history and biomedical research in the laboratory or field. We developed Sal-Site to integrate new and existing ambystomatid salamander research resources in support of this model system. Sal-Site hosts six important resources: 1) Salamander Genome Project: an information-based web-site describing progress in genome resource development, 2) Ambystoma EST Database: a database of manually edited and analyzed contigs assembled from ESTs that were collected from A. tigrinum tigrinum and A. mexicanum, 3) Ambystoma Gene Collection: a database containing full-length protein-coding sequences, 4) Ambystoma Map and Marker Collection: an image and database resource that shows the location of mapped markers on linkage groups, provides information about markers, and provides integrating links to Ambystoma EST Database and Ambystoma Gene Collection databases, 5) Ambystoma Genetic Stock Center: a website and collection of databases that describe an NSF funded salamander rearing facility that generates and distributes biological materials to researchers and educators throughout the world, and 6) Ambystoma Research Coordination Network: a web-site detailing current research projects and activities involving an international group of researchers. Sal-Site is accessible at

    Identification of Mutant Genes and Introgressed Tiger Salamander DNA in the Laboratory Axolotl, \u3cem\u3eAmbystoma mexicanum\u3c/em\u3e

    Get PDF
    The molecular genetic toolkit of the Mexican axolotl, a classic model organism, has matured to the point where it is now possible to identify genes for mutant phenotypes. We used a positional cloning–candidate gene approach to identify molecular bases for two historic axolotl pigment phenotypes: white and albino. White (d/d) mutants have defects in pigment cell morphogenesis and differentiation, whereas albino (a/a) mutants lack melanin. We identified in white mutants a transcriptional defect in endothelin 3 (edn3), encoding a peptide factor that promotes pigment cell migration and differentiation in other vertebrates. Transgenic restoration of Edn3 expression rescued the homozygous white mutant phenotype. We mapped the albino locus to tyrosinase (tyr) and identified polymorphisms shared between the albino allele (tyra) and tyr alleles in a Minnesota population of tiger salamanders from which the albino trait was introgressed. tyra has a 142 bp deletion and similar engineered alleles recapitulated the albinophenotype. Finally, we show that historical introgression of tyrasignificantly altered genomic composition of the laboratory axolotl, yielding a distinct, hybrid strain of ambystomatid salamander. Our results demonstrate the feasibility of identifying genes for traits in the laboratory Mexican axolotl

    From Biomedicine to Natural History Research: EST Resources for Ambystomatid Aalamanders

    Get PDF
    BACKGROUND: Establishing genomic resources for closely related species will provide comparative insights that are crucial for understanding diversity and variability at multiple levels of biological organization. We developed ESTs for Mexican axolotl (Ambystoma mexicanum) and Eastern tiger salamander (A. tigrinum tigrinum), species with deep and diverse research histories. RESULTS: Approximately 40,000 quality cDNA sequences were isolated for these species from various tissues, including regenerating limb and tail. These sequences and an existing set of 16,030 cDNA sequences for A. mexicanum were processed to yield 35,413 and 20,599 high quality ESTs for A. mexicanum and A. t. tigrinum, respectively. Because the A. t. tigrinum ESTs were obtained primarily from a normalized library, an approximately equal number of contigs were obtained for each species, with 21,091 unique contigs identified overall. The 10,592 contigs that showed significant similarity to sequences from the human RefSeq database reflected a diverse array of molecular functions and biological processes, with many corresponding to genes expressed during spinal cord injury in rat and fin regeneration in zebrafish. To demonstrate the utility of these EST resources, we searched databases to identify probes for regeneration research, characterized intra- and interspecific nucleotide polymorphism, saturated a human - Ambystoma synteny group with marker loci, and extended PCR primer sets designed for A. mexicanum / A. t. tigrinum orthologues to a related tiger salamander species. CONCLUSIONS: Our study highlights the value of developing resources in traditional model systems where the likelihood of information transfer to multiple, closely related taxa is high, thus simultaneously enabling both laboratory and natural history research

    Sequencing of the Sea Lamprey (Petromyzon marinus) Genome Provides Insights into Vertebrate Evolution

    Get PDF
    Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ∼500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms

    By

    No full text
    Tiger salamanders, and especially the Mexican axolotl (Ambystoma mexicanum), are important model organisms in biological research. This dissertation describes new genomic resources and scientific results that greatly extend the utility of tiger salamanders. With respect to new resources, this dissertation describes the development of expressed sequence tags and assembled contigs, a comparative genome map, a webportal that makes genomic information freely available to the scientific community, and a computer program that compares structure features of organism genomes. With respect to new scientific results, this dissertation describes a quantitative trait locus that is associated with ecologically and evolutionarily relevant variation in developmental timing, the evolutionary history of the tiger salamander genome in relation to other vertebrate genomes, the likely origin of amniote sex chromosomes, and the identification of the Mexican axolotl sex-determining locus. This dissertation is concluded with a brief outline of future research directions that can extend from the works that are presented here

    Microarray analysis identifies keratin loci as sensitive biomarkers for thyroid hormone disruption in the salamander \u3ci\u3eAmbystoma mexicanum\u3c/i\u3e

    No full text
    Ambystomatid salamanders offer several advantages for endocrine disruption research, including genomic and bioinformatics resources, an accessible laboratory model (Ambystoma mexicanum), and natural lineages that are broadly distributed among North American habitats. We used microarray analysis to measure the relative abundance of transcripts isolated from A. mexicanum epidermis (skin) after exogenous application of thyroid hormone (TH). Only one gene had a \u3e 2-fold change in transcript abundance after 2 days of TH treatment. However, hundreds of genes showed significantly different transcript levels at days 12 and 28 in comparison to day 0. A list of 123 TH-responsive genes was identified using statistical, BLAST, and fold level criteria. Cluster analysis identified two groups of genes with similar transcription patterns: up-regulated versus down-regulated. Most notably, several keratins exhibited dramatic (1000 fold) increases or decreases in transcript abundance. Keratin gene expression changes coincided with morphological remodeling of epithelial tissues. This suggests that keratin loci can be developed as sensitive biomarkers to assay temporal disruptions of larval-to-adult gene expression programs. Our study has identified the first collection of loci that are regulated during TH-induced metamorphosis in a salamander, thus setting the stage for future investigations of TH disruption in the Mexican axolotl and other salamanders of the genus Ambystoma
    corecore